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Abstract

In a recent paper'Tt-vai showed that an unknown real-analytic conduct-

ivity may be determined from static boundary measurements. Here-we extend

this analysis by demonstrating that a similar result holds for piecewise

real-analytic conductivities. In addition, ft)r the special case of a la'.ered

structure ve-s9*^ii that a three times cortintiously differentiable conductivitv

is identifiable by boundary measurements. .J4.- I-

I ip J' .11
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1. Introduction

This paper addresses the following inverse problem: Can one determine

an unknown conductivity y inside a body 2 by means of static measurements

at the boundary? Since there is no dependence on time, the underlying equation

7.(y~u) - 0 is elliptic. Our first paper [6] established the identifiability

of a real-analytic y ; in this one we demonstrate a similar result when "

is piecewise real-analytic (for example, piecewise constant).

Consider a bounded domain 0 E I n , 2 , and a "conductivity"

E L(0) , 0 < y0 
< y(x) For appropriate there is a unique u E H (2)

such that

(i) 7-(y(x)Vu) = 0 in a2

u on 9Q'

obtained for example by minimizing Dirichlet's integral. Let Qy( ) be the
Y

energy of the solution,

Q(,) fyvul 2 dx

If all is sufficiently smooth then Green's formula gives

S 3u
O M u'( dsY J3

where "ds" denotes surface area; consequently Q (') depends only on the
Y

Dirichlet-data ¢ and its associated Neumann-data, the conormal derivative

y . Our inverse problem is to determine y given knowledge of the quadratic

form QY . We shall say that y is identifiable (within a certain class)

by boundary measurements if the map y - Q is injective (in this class).

'°'"~~ ". . . . . . ... " . ". * - " "".". " ".".. . . . " -. . -. ". " "" " " " " " " ; ". .

" • ° " " - " .• • ° " , • • * * o - .'-" " ° - .o" - . .
"

" ° " .- - l ° 
°
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There is an equivalent formulation in terms of the map taking Dirichlet-

to Neumann-data

-u
A u! -+y

*Y 9P 3 ~

The form Q determines the map A , by polarization. Therefore our problem

is alternately to determine y given knowledge of the Dirichlet- to Neumann-data

map A

If y and -v are known at D2 , then there is another formulation
V

involving - A + q Indeed, v y u solves

-Av + qv 0 in i.

1/2vy on ,

with

(2) q 2V - + A"
4 y. 2 y

whenever u solves (1), assuming sufficient regularity of y . The Dirichlet-

* to Neumann-data map for q is

If the boundary values of y and are known then information about A
?V q

is equivalent to that about A ; hence our problem is also to find the
Y

unknown potential q(x) given knowledge of the ma A
q

Some special cases of the inverse problem can be treated by separation

of variables. R. E. Langer considered 7 layered half-space in 1933 [8. He

reconstructed all the derivatives of y at the boundary from knowledge of

for just one particular flux Me ereover his choice is one which natur;illv

%- how.•. . . .. . ".7. - -- :'_:. .- ,-"" . -" ". . ,' "'' . '".' '. "?
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shows up in geophysical applications. Another example is that of a layered

rectangle, analyzed by Cannon, Douglas and Jones in 1963 [2].

The general case, without restrictions on the form of n and y , has

only been considered more recently; to the best of our knowlege it was first

raised by A. P. Calder6n [1]. He proved that the map y - Q is Frechet

differentiable for y E L , and that the differential at y = constant is

injective. However its range is not closed, so the implicit function theorem

does not apply, and one cannot conclude the identifiability of y from

this analysis.

We took a different approach in [61, using the variational principle

and special Dirichlet data with localized, highly oscillatory behavior. We

proved that the quadratic form Q (or the map A ) determines all the
Y Y

derivatives of y at the boundary. Identifiability in the class of real-

analytic y follows as an immediate corollary. A more extensive review of

the literature is found in [7]. It seems worth noting that the method of [61

can also be used for - A + q , even when q does not have the form (2). If

q and 30 are C then the Dirichlet-to Neumann-data map A or the
q

2 2
corresponding energy form q f(jvvj2+qjvj )dx (provided each is well--defined)

determines q and all its derivatives at the boundary.

Unfortunately, the results just summarized are far from satisfactory.

The original goal was to reconstruct y everywhere, while these results

give only its derivatives at the boundary. It remains unknown, for example,

whether a C0 conductivity is determined in the interior by these boundary

measurements.

The present paper represents some modest progress toward the interior

reconstruction problem. Our main result is one of identifiability in the class

of piecewise real-analytic conductivities. The proof, presented only in dimension

two for ease of exposition, uses the ideas of [6] together with the Runge

d -: S.. . . . .. . . . .. . . . . . -. . . . . .. .. . . . . ..
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Approximation Property for solutions of V-(y7u) - 0 . Its concept is

sketched in section 2, and the details are developed in sections 3-5. Our

second result, presented in section 6, is the identifiability of a layered

* conductivity which is merely three times continuously differentiable. For

i 2
simplicity we treat only the case of a finite-width strip in ]R . The proof

uses separation of variables and recent progress in one-dimensional inverse

spectral theory. Our third topic, presented in section 7, is the convergence

of a reconstruction algorithm for real-analytic y . This algorithm restricts its

attention to approximations of y within a suitable compact set and the

proof of convergence depends heavily on the identifiability demonstrated in

[6]. The proof gives no information on the rate of convergence or the

efficiency of the algorithm;these remain important directions for further study.

- .

-

:_-I

I-

pi

.......................................
. . . . . . . . . . . . . . . .. . . . . . . . . . . . . .



i2. Concept of the piecewise analytic case

We begin by reviewing how boundary measurements were shown to determine a

real-analytic conductivity in [6]. Given a smoothlv bounded domain consider

two coefficients / and ,, and let ui and u be the corresponding solutions

of (1):

(3) V.(YiVui) = 0 , u , i 1,2

If Y Y then their Taylor expansions differ; relabeling if necessary,

one easily concludes that

Y1(x)-Y 2(X) Cp(x) , O(x) = dist (x,aQ)

p

for some Z 0 , in a - neighborhood D of some 20 E 2 By choosing

Dirichlet data that oscillate rapidly near L0 one can arrange that the

energy of u1  be concentrated in D , and indeed that .,

(4) J2UIdx < E f pIvull 2 dxJQ\D 1 -- f-."

with E > 0 as small as desired (see Lemma 3). Then

f Y1 Vu1
2 d2

(5) YQ (d) =, fD__ ~ dx

J y2 j uUl
2 dx + C u 1 dx -

> Y ,9_7uI l 
2d x """

(6) , f dx= Q

using (4) and the variational principle for (3) in the last two steps. Therefore

%p
* . . -* * . . . . .**. .. *. . . * .*..*.. .* . * *

. *. **. . . . .. *. . .
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for this choice of 0 the boundary measurements are different.

Our method for the piecewise analytic case is a direct extension of

this. Consider the simple example of the ball 2 = {1.1<1} with an unknown

concentric inclusion:

Yi(- <r.

Yi i =1,2.
y.(-) >rli

Here y' and y" are real-analytic functions of x . If y and

K e the same boundary measurements then the argument sketched above shows

that Y" = Y" in ixi > max(rl,r2) A new idea is required, however, to

establish that yI = Y also for la < max(rl,r)
21 2

Assuming that r1  r2 , what we would really like to do is to repeat

the estimation

2 r 2YJ 'VU' dx > J Y2 17u1 l dx

with Q replaced by the subdomain Q' = (l[<r2} . At first glance this

seems impossible, since the elliptic equation 7.(yVu) = 0 will smooth out any

oscillations of the Dirichlet data prescribed on the outer boundary. But in

fact it is possible, since this equation has the Runge Approximation Propertv:

if 7-(yVu) = 0 on a subdomain w c P , then u can be approximated on

compact subsets of w by solutions of the same equation in the full domain

- (see Lemma 2).

Therefore to show that y= y, across = r2 , we once again assume

the contrary: if not, then

(x y ,X (> 2rc'- '() l

.-....... . W... ...................-.....

..".- ." 'v -. -. "-.."..-".." .**. . . .. %** -.*..".." %.. i . ..''7" .. . ".-...,.. ." ,"." -" ," .-. -- 6 .-. i -"



for some 0 , in a neighborhood D' relative to f' = {Ir 2} of

some 0 f' E We suppose for simplicity that yI is the larger in this neighbor-

Ihod. The construction of [61 together with the Runge property leads t, a function

u with 7'(- 7uI ) = 0 on all of and

!7ul 2 d x < E (C' ) Vul 2 d x
L'\D' uD'

(see Lemma 4). The behaviour of u1  off 2' is essentially unknown, but

that is acceptable because y1 = Y2 there. Estimates parallel to (5)-(6)

using u U 4 show that Qyl () > Q y() when c is small enough.

Therefore if yI and y2 had the same boundary data they must have been

equal in a neighborhood of Ix! =r 2

If r1 = r2  this argument establishes y Y2 If r1 < r2  then

we've shown that YI = Y2 in {Ixj>r I} ; the same argument can be repeated

at jxj = rI  to establish Y= Y2 in -IxE<r } , and it follows that

Y= .Y2 Though the geometrical and analytical technicalities are substantial,

this procedure of "marching inward from the boundary" will work in essentially

the same way for the general piecewise analytic case.

..-.

.- ..-- -... '...'. ..--.. . -. .. -. ..i;i -ii-.~
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3. Preliminaries

We begin with definitions and conventions on the use of the term

"piecewise analytic". From this point on we drop the prefix real and use the term

anal -tic as a sy-'nonym for real -analvt ic. Lt w be an o-,en , in 1R

m = 1 or 2 We recall that a function y : w -R is analytic in if it

is infinitely often differentiable and for every compact subset K C: there

exists a constant rK for which

1p (el IDCy(x) ,sup -T.' r [

the supremum being over all points x E K and all m-tuples a of nonnegative

integers.

We shall say that a C function y is analytic on w if it has

an extension which is analytic in a neighborhood of w . A mapping

20
g : [0,1] -'R is called an analytic curve if each of its coordinates is

analytic on [0,1] and Dg(s) # 0 for all s E [0,11.

A bounded, open set w C R" is called a piecewise analytic domain if

(i) W is connected,

(ii) its boundary aw is a union of

finitely many (images of) analytic

curves,

(iii) w lies locally on one side of 9w

Notice that the boundary of a piecewise analytic domain can have cusps.

Following [31 we say that a bounded, open set R P is an analytic

curvilinear polygon if it is connected, and if for each x E 3J. there exists -

a neighborhood B of x (relative to IR 2) and a map $ such that •

- *•, **- -* ~ - . .. '.. .'o *



(i) D maps B injectively onto a neighborhood

of the origin in F"

(ii) D and C have analytic coordinate functions

(iii) ?(wfB) is either {x x 2>0 F1 (B) , x > 0 and

O B) or "X: 1 i.0 or x,>Ol r, :(B)

Analytic curvilinear polygons are special cases of piecewise analytir doraiins

without cusps and "corners" of angle

A family {W }N= is a (disjoint) piecewise analytic cover of a closed

set W if

(i) each w. is a piecewise analytic domain,
J

N
(ii) w c J .

j=1

(iii) w. n w. = w for i # j
3 J

A function y w -IR is piecewise analytic on w (relative to the cover

{w.}) if it is analytic on each w I j N Notice that no continuity

is assumed across the interfaces.

In proving identifiability we shall consider two conductivities yI and

Y2  corresponding to different piecewise analytic covers. It is important to

note that they are both piecewise analytic relative to a common refinement of

the two covers%

Lemma 1. If "l and are piecewise analytic functions on , then

there exists a piecewise analytic cover {a.IN such that both andjj=l such that boh i n _ ""

* are analytic on each ,. , 1 j N

Proof: Let faw W} be a cover relative to which Y. is piecewise analytic,
i j=l

(1) (2)i = 1,2. For any pair (j,k) the boundarv of the intersection a.
k

* * .*
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(i) ,q(2)
consists of finitely many (images of) analytic curves. Of course ( W kj k

may not be connected; also, as shown in figure 1, the boundary might intersect

(1) (2)2

' , ' l ,j. = { X N - I . 2 < '  : x ; < l }
J "k

(2)

k x -R: x- (0,1/4)>c3/4

Fig. 1

itself at isolated points. Nevertheless, by considering the connected components

and "cutting out" a neighborhood of any point of self-intersection and dividing

this neighborhood in separate pieces. w, can obtain

(1) (2) - * '

where the we are disjoint, piecewise analytic subdomains of W.l n w/2

The collection of all w~ (corresponding to all pairs (j,k)) constitutes

a cover of Q relative to which both y and y are piecewise analytic.

Remark 1. .

In the preceding proof we used the fact that two analytic curves either

intersect in at most finitely many points or the intersection is itself an analytic

curve. This was used to conclide that the intersection of two piecewise analytic 0

domains has a boundary which consists 6f finitely many analytic curves. A

k
similar fact does not hold for C -curves, and this is why we work with piecewise

9

.' .' .,.. " .' ... ... . . , . ... .% - ... ..- . .. % -'. ","- -, .- , ,.. .". .- ,....- ,. . ." . ..- . ., '- ' ... . -. _
. . . . . . . .
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anaivtic partions of 2

For an arbitrary open set w CF. , m 1,2, we use the terminology

H k(w) to denote the set of functions that together with all their derivatives 0

of order . k are square integrable in w Spaces with noninteger indices

are defined by complex interpolation. If g is an analytic curve with

{g(s) : s E (0,i)} = r , then H t(F) denotes those functions u for which 0

t t
uog E H ((0,1)) . The norm on H (w) is denoted F. and similarly for

t
the space H (F)

Let s2 be an analytic curvilinear polygon. We recall that 2 4.

is a corner if near it 0 is analytically isomorphic to either {x : xl>0 and

x?>O or {x : x1 >0 or x 2>01 . Let x(s) , s E [-6,6] , 6>0, be a

parametrization of 2 near 20 = x(O) according to arclength (i.e. the arclength

from x(s) to x is sl, and x(s) and x(-s) lie on opposite sides of _S).

If is a function on Q , we set

2 -IJ(€) O A(x(s))-(x(-s))2 s -ds

2SO 0

Let:-. , 1 < i M , be all the corners of ?- , and let = gi(s) S (0-

where gi , 1 . i . M , are the analytic boundary curves connecting these corners.

We define RlHI /2 (i
1/2(a) E H ( 1 5 i : M and

H (0<,. E

M 
11

1. 1/

2'"-i '

There is a continuous, surjective trace operator from H to (3Q) f31.

• -d..9."..: ,i-".."-:',:,'Z '~~~~~~~..'..'........--......-.. .. -.. ,... .. .. . .• . •-. .-. ""
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the statement "u 0 on D" should always be interpreted in the sense of this trace.

For any y E L with 0 < - :5 Y(x) we denote by L the correspond-

ing operator

L u = 7'(yVu)

Y

The equation

L u =0 in 2, u= on D. ,

has a (unique) solution u E H (Q) exactly if ; E I/2(S) the energy

f. y 7u 2 dx is a continuous quadratic form on 0i/2 () Whenever u E HI (2)

and L u E L (.Q), the conormal derivative

; 1/ R1/2)9* (the dual of

is defined by

r u r "" Y  'ds yVu--v dx + L u'v d-x

where v E H (2) is any function satisfying

v on 1 ' Iv'i, Hi "

• ul u -1/2"'
The Dirichlet-to-Neumann operator A u -Y maps H to... y '32. ... t

[HI/2,)* , and its image is the subspace annihilated by the constant functions.

We turn next to the Runge Approximation Property. Let w be a subdomain

of 2 and consider a solution of L u 0 in w It is generally not

possible to extend u to a solution of L yU = 0 in the full domain 2 , that

would correspond to solving the Cauchy problem for this elliptic equation. It

d° e-°'° ° _ _ _ .. . .. . . . . .• . ° -.• - . -v . . .. . . . -. • - . . .. . ."-"-"-. . . -,,.-.-., ..: '-- -
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is possible, however, to find an "approximate extension" in a certain sense.

This follows from results of Lax [9] and Malgrange Lll]; we give a complete
I

proof for the reader's convenience.

Lemma 2. (The Runge Approximation Property) Let w be a C domain

contained in the analytic curvilinear po1von 2

and such that each connected component of Q\w has a boundary curve in common

with a, . Let 0 < y0 < y(x) be piecewise analytic on and assume that

u E H Mw) satisfies

L u - 0 in w
Y

Given any compact subset K C w and an > 0 there exists U E H (M2) such

that

L U -0 in , and
Y

2dx <'.

'K F(U-u)l dI < c-.-

Proof: It will suffice to show that J IU-ul 2dx can be made as small as

desired, since

IV(U-u)1 2 dx.< C I U-ul 2 dx
JK -- W--"

as a consequence of the identity L (U-u) = 0 in w . So we must show that
y -. 4

IH {u : u-UIW,UEH (S),L U-0 in 2}

is dense in

2
{u : uEL (w) , L u 0 in w}

.......................................................................... ...................
4" ." ,z'e ' r.,s _', ' .

"' . ," " ". ,.-- , ' , ' ","."-" " ". -"- ' . , . ,-" ." ,- " "," .- "~ -" "* *"' '-' *
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2
in the norm of L (w)

2
If not then there must be some u* E L (w)\10} satisfying

Lu 0 in w
Y

(7)
r u v dx 0 for all v E H

1
We shall derive a contradiction from this. Let 0 E H (Q) solve

(8) L = U in a, - 0 on a.

where U*' u* in Li, U* 0 in .\w By (7)

rp
0= j u*V dx = L .V dx

sY V "

for any V E H (7)with LVO0 in n2 therefore 3-=0 on D72

y av.

We recall from (8) that D also vanishes at a. Since y is piecewise analytic

on * , u 0 0 in a\w , and each component of Lto has a boundary curve in

common with a , it follows by repeated application of Holmgren's Uniqueness

Theorem (see e.g. [4]) that

= 0 in 2\ "

Therefore P = y - = 0 on 3w , and as a consequence P

r r
[u dx = L D'u*dx-- 0 -

*

This contradicts the hypothesis that u was nonzero, and the proof is complete.

.. % . •

* **......
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Remark 2: It is not essential that w be smoothly bounded or that 2 be an

analytic curvilinear polygon. The hypothesis that y be piecewise analytic can

also be relaxed, by using Aronszajn's unique continuation theorem instead of

Holmgren's. The version stated here, however, is exactly what will be needed

in the proof of Lemma 4.



16

4. Energy estimates

The following is a slight reformulation of a result in [61.

Lemma 3. Let w be a bounded C domain, a point on 3w , and D a

neighborhood of 0 relative to u . Assume that y E L() , 0 < y(x)

and that y E C (D) . Given Z > 0 and E > 0 there exists u E ()

such that

(i) L u = 0 in W
Y

r r pVu 2
i17ul dx < dx

with Q(x) = dist(x,w).

Proof: For any fixed integer M > 0 , Lemma I of [61 constructs a sequence

{N } i c C(Ow) such that
N N=l-

t

(9a) :I, .< -.t

N 1t + t-.-.

(9b) 'IN!1 = 1

(9c) supp N { 0 }  as N -

'We review the construction when is the origin and 3 = {x : x2 = 0} (to

which the general case is easily reduced). Let be a C function on ,,

not identically zero, with

supp C C [-1,11

s k 5(s)ds 0 for integers k , 0 k . M - 1

. .
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if (~x 4,px 1  one easily verifies that = N . has

2'a

properties (9a-c).

Now consider the solution uN of

L u 0 in w , N~ on aw.

Lemma 2 of [6] shows that

C -M

while by Lemma 3 of [61

N 6 C >

for any 6 > 0 A combination of these gives

(1) ~\2NC (2+6)Z-2M r z 2d

By choosing M > Z and 0 < 5< 2M-2 we obtain (2+6)t -2M < 0 ,and hence

(11) C (2+6)t-2M

for sufficiently large N .The corresponding uN satisfies Ci) by

*definition and satisfies (ii) as a consequence of (10) and (11), using the

D fact that fD P 1U NI 2d 0



The next lemma combines the result in Lemma 3 with the Runge Approxima-

tion Property to obtain a similar energy estimate for subdomains and with

functions that are "y-harmonic" in the larger domain. For our later applica-

tion of this result it is essential that the subdomain be only piecewise

"smooth". If w is an analytic curvilinear polygon then we shall call

0 E 3w a regular boundary point (relative to y ) if there exists a neighbor-

hood B of O in IR2 and a map D such that

(i) I maps B injectively onto a neighborhood

2
of the origin in JR

(ii) both maps D and 4-  have analytic coordinate

functions,

(iii) (Bnw) is given by {x x >O} n D(B) and
2

y is analytic on B - .

Lemma 4. Let w , '2 be two analytic curvilinear polygons with w

Let a riecwisc anj1vric function on with 0, 0 :1) Assume that x0 E

is regular relative to y and that L0 lies in the unbounded component o4

. Let D be a neighborhood of x relative to w . Given e 0 and

E > 0 there exists U E H (0) such that

i) L U =0 in 2

(i2 2
(ii) !VUI dx < Q 17!L 2d_

J\ D 4D

where P(X) = dist(x, 3w)

7,e 7 t
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Proof:

We may without loss of generality assume that w C Q and that 0 is

simply connected; if not we merely enlarge Q2 and extend I by 1 on this new

piece of Q Let w' c Q be a C domain so that

(i) W is simply connected and contains w

(ii) the boundary of w' coincides with the

boundary of w in a neighborhood of

(iii) \D C w'

(See Fig. 2.)

Fig. 2

Choosing a neighborhood D' c D of relative to W, we apply

Lemma 3 to construct u EH W~) satisfying

-...
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(12) 2 Vu2dx < 6 1,7uI (1) u2dxfW'KD' fD' -

where p'(x) = dist(x,aw') and 5 > 0 is arbitrary. If D' is small

enough we have

P'(x) - dist.(x, w') - dist(x, u) = p(x) 5

for all x E D' , and then (12) implies

(13) Vu 2dx < 6 P ,u 2dx
,w\D fD

Since the inequality in (13) is strict, there is a compact subset K c interior-(D)
D

for which

(14) fwD Vul dx < 6 fKP U2dx

Let K -w U KD • Since it is a compact subset of w ' Lemma 2 applies to

give a function U E H (Q) satisfying L U = 0 in Q and

f 7(U-u) 2dx < 6 ZeAVu.2dx

I
Assuming for simplicity that p $ 1 in KD , we conclude that

f [7(U-u)!1dx + P dI(U-u x < J o .7u-dx

(15) (1 - 5) { 'uIdx 1_ eK[UI 2 dx_
- KD D

2 2
It. flo u.

2.......

(1. . . . . . . . . . . .. . .
.' .. ; .. ,.-". .2...-"-, , 2,.v ... v -, , .. , .) . d--." -, < .P •• "1,7•-.---. ."."...-'. ,•" " .•- ". •" .,."-,,.-.".



and

(16) f I VUI'dx 6 f plVudx + fW\ Vu,2 2
KD

Inequalities (14), (15) and (1.6) combine to give

2,. r 9,7u2
w\D 1 dxi < 46 K ID u dx

< 86 6 z VU 2 dx
1 26 jK

S 86 t 17U1 2 dx

*We get the desired inequality by choosing 6 so that 86/(1-28) =c
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5. Identifiability of piecewise analytic coefficients

Let Q be an analytic curvilinear polygon. Our goal is to show that

two piecewise analytic conductivities y and y, that produce the same

boundary measurements are necessarily equal. It is assumed that 1 E LY ()

with 0 < 0 y (x) (i=1,2) . "Producing the same boundary measurements" means

that the maps

A :l/2 (3p) 1/2*()]*

Yi

defined by

3u.
A i, = Y where Liu' = 0 , uil. =

are the same for i = 1,2. Equivalently, it means that the quadratic forms

Q( ¢) = J yiIui 
2dx

* are the same.

Theorem 1. Let yi , i = 1,2 , be piecewise analytic functions on . with

a positive lower bound. If

Q 1(*) =Q 2(¢)-

Q Q.

for all H ' (3?) , then

• " i = '2

Proof: 1'e shall assume that (i and -Y1) are piecewise analytic relative

Nto the same covering w ; by Lemma 1 this represents no loss of generalitv.

. . . . . .. . .

. - . .. . . - * S - -. . . S .
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Seeking a contradiction, we suppose that y 1 Y2' and we order the cover so

K
that [W I are exactly the elements where y# Y

For any analytic curvilinear polygon P' , the outer boundary is that

part of a£2' which lies in the unbounded component of 2 Z, [ We claim that

there is an analytic curvilinear polygon 0' 9_ 2 with the following properties:

(17a) £' contains all w. , 1 < j KJ

(17b) The outer boundary of Q' has an analytic

curve in common with aw. for some jJ

1 j <K..

Indeed, if aw. has a curve in common with the outer boundary of 2 for

J

some j , 1 < j < K , then it suffices to take Q' = & . Otherwise we choose

K
. x' E 3( U w.) and x" on the outer boundary of Q such that x' and x"

j=l 
J

are connected by a piecewise analytic (e.g. piecewise linear) curve lying
K __

* entirely within 2N U w. , except for the endpoints. 'e may also assume that

K j=l K

-( U W.) is an analytic curve near x' , and that :J w. lies locally on
j=l - K j=l J

one side of ( U .) By excising from £2 a tube along the curve connecting
j=l 

xv and x" (with, say, piecewise linear boundaries) we obtain an analytic

curvilinear polygon £2' with the desired properties. (See Fig. 3).

[x

outer boundary of 2

Shaded area marks

"tube" to be cut from £

3( -J 1.
J-1

Fig. 3

A:::v %

. - .
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For such Q' , let w. , 1 j K , be a piecewise analvtic domain sharing

an analytic curve 7 with the outer boundary of 2' Since y and y are -

different on wj , their Taylor expansions must differ along 7 Therefore

there is a point x in the interior of 7 and an integer f 0 such that

IYl (x)-Y 2 (x)> c [dist(xQ')] , c > 0

in an 2'- neighborhood D of K. Note that the boundary point 3 is

regular relative to yi i = 1,2, and lies in the unbounded component of B

Writing p(x) = dist(x, Q') , and relabeling if necessary, we have that

I

(18) yl(x) - y2 (x) >. c p (x) in D

11

Lemma 4 with w = Q' and y = yI yields a function U E H (2) such that

(19a) L U= 0 in 2
Y1

(19b) Ivu2 dx <p

fQ'\LD d D d

where c > 0 is a small parameter to be chosen later. Setting

-1/2-
= U E H (32)

we have

(20) Q ) = Y VU .dx

+- rr + +( ;1 2dx
J\ ' .'\ D D- . . -
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Since y, ' outside Q' the first integral equals

Y 2 Ivul 2dx

the third integral can be bounded from below using (18),

Ivl2 d U 2 d+ c p z17Ui dx
fD 1JD Y 2 1 1  - 2

Substitution into (20) yields, after deletion of the second integral,

rl JD ' 2 c 2

(21) = IVU1 d2 t c 2

Applying (19b),

~, YvU 1dx <(sup Y2) ' I2'\ 2d

Ecsup Y2 Jdx V

If E: < c/sup Y 2 (c>0 is the constant in (21)) then it follows that

2 d

But

Q mi j ylv)2 dx
'YI j Y2

* .-.- .........................................................
. . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .
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so (22) implies that

Q (i) > Q y(G)

1 2'

This contradicts the assumption that y and y2  give the same boundary

measurements. Therefore there can be no element w. of the cover on which

# y 2 , and the proof is complete.

. ....
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6. Layered structure

In the class of L (or even C) coefficients y , identifiability by

means of boundary measurements remains an open problem. It is natural to

expect, however, that the layered case which is essentially one dimensional -

should be easier. In fact, in this case the Dirichlet- to Neumann-data map

determines spectral data for a certain potential, by means of analytic continua-

tion in Fourier space. One dimensional inverse spectral theory is rather well

understood, and it will allow us to recover a conductivity y which is merely

three times differentiable. We wish to chank D. Stickler for suggesting the

use of analytic continua-ion to pass from boundary measurements to spectral 'data.

Throughout this section . will be the infinite strip {x : -x

0.'×?<i} cR 2 and Y = y(x2) will be in L ((0,1)) with a positive lower

bound. For any pair (Ot) E [H /1R)]2 there is a unique u E H (Q) such that

(23) V.(Y(x2 )u) = 0 in Q2 , ul 20 , x . • I
2 2

The associated Dirichlet- to Neumann-data map is

• .43U'~ au ~ xl E [1/2 2

We begin by observing that A determines y and -- at DQ even
Y ax2

when y is merely C

* Lemma 5: If (I and Y2 are on and A = A then their values.. 1 '2 t

and first derivatives agree at .2

Proof: We shall check that the argument of [6] applies. First of all, the

2
regularity estimate (7) of that paper holds for k - 2,3 when y is C .

Therefore formula (14) remains valid for M = 2 , and the proof of Lemma 3 works

....-
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with t 3 in (23). If e I 1 in (26) then the argument on pp. 296-7 applies

using M 2 , and this yields the desired conclusion.

Remark 3: This proof does not use the layered structure, but it does use that

o..R2 For ' C IRn the same argument requires y E Cr > r Taking

into account the layered structure it is possible to reach the conclusion

thic~i " 1 - ', from only knowing that A ( ,4) = y(,i) for two sets

of Dirichlet-data (O) (see Remark 5).

Our next task is to separate variables. We shall write v - v ( ,x2)

for the Fourier transform of a function v(xl,x 2) with respect to its first

argument. (If v only depends on xI  then we write v( ) ; no transforms will

ever be taken with respect to x2 .) From (23), the solution of L u = 0 with

Dirichlet-data ( ,w) satisfies

d d 4. 2( l ,•
(24) d Y(x2) dxU ulx 2 )) - ))U''2 = 0 < < 1

22 2

-.(,o ,,4. , G (,) ,

for a.e. ER•

The ODE (24) has its own boundary data map Ay, for each fixed E M.

It takes J- to ]- , mapping (a,B) to

(25) A (a,B) (-yv'(O),yv'(1))

where v E H ((0,1)) solves

(26) (yv)' - v - 0 in (0,i) v(O) = a v(l) -

... . .. 
° 

.-
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The two-dimensional boundary data map A determines this A for

every :

Lemma 6: If YI and are L with a positive lower bound and A A
Y2 Y,

then A WA for each E EIR.YIl Y2,9-:

Proof: Choose Dirichlet-data , and j such that and 4 , when restricted

to some interval (a,b) , vanish at most on a set of measure zero. From the

hypothesis that

A (0,0) - A (0,0) and A (0,') A (O,")i Y2 YI Y2

it follows easily that

A A for a.e. E E (a,b)YI,9 Y2, -.

Since A is real-analytic as a function of , the same identity must
"%.

hold for all R

In order to apply inverse spectral theory, we must transform the ODE

(26) to a more convenient form. If v solves (26) then w = y-v solves

(27) -tr"+qw+ 2 w 0 in (0,1) , w(0) = y (O)a , w(1) = () ,

* -with

(2)1 ,2 2 1,-.-(28) q =  (y' )/y2 + 7/Y

We note that

v 1- ,
w"=y ' + -Y yv.

-. * * -• * *** * . . .. .. -* , •. .. . " • ' ":K." , .. . •. - .. .-._ ._- /.. . ... .X. *.. .- ...- .-....- .'. -'.-. ,. , ..-'' """ ":
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The Dirichlet-to-Neunann map for (27) is

q,& (w(O),w(1)) - '

clearly it is determined by A and the values of y and y' at 0Y'-C

and 1.

Inverse spectral theory addresses the problem of determining the

potential q(x) given knowledge about the eigenfunctions and eigenvalues of

-d2/dx 2 + q The result we shall use is this one, proved in [121:

Lemma 7. Given two potentials qi E C ([0,1') , i = 1,2, consider the ooerators

d-+2 +q i 
i

dx2

with homogeneous Neumann boundary conditions. Let A and ( be the- m - m

mmassociated eigenvalues and eigenfunctions, with the normalization M(0 1

If A = X(2) and (i)(1) = ,(2)(1) for each m then q q
- m m m m 1 2

It remains to relate the boundary data maps A and the spectral data for

q . To this end we consider yet another map M taking Cauchy data at 0

to Cauchy data at 1 for the ODE (27). Explicitly,

M (a,6) = (w(l),w'(1)) whereq,&

2
-w"+qw+ w= 0 in (0,1) , w(O) = a , w'(0) = 6

It is easy to check that

Sifandonly if Aoql, qany q, m any o E A q2( t t

for any qi of the form (28) and any E R (that qi has the form (28) is

">" w-
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0

.n way.' to AUr'1lntk, thalt is w,.1i-dt intJd. For the purpose of idenLifving y the

use of M q, is thus equivalent to that of A . An important difference

is that M is well-defined for complex arguments (and arbitrary q E L )"

indeed it extends to a holomorphic function in the entire complex plane. The

values of M for complex are therefore determined by those for real
q,;•

by analytic continuation. It is easy to show that M (with complex )

determines the spectral data of q

Lemma 8: Let qi ' i=1,2, be two potentials in C (10,1]) . If M q19 M q2,

for all complex , , then q1 = q2

Proof: Assume that X l )  and p(I) is an eigenvalue and the corresponding

eigenvector for the operator -d 2/dx2 + q with Neumann boundary conditions,

- [ (l)],, + ql (1) - = 0 in (0,1)

,())(1)') () -0 .. i'-.

~' ( 0 ) ( _

As in Lemma 7, we may take the normalization 0

(01

Choosing n E C so that n 2 -A( , and noting that 0

M (1,0) = M (1,0)
n~2

we see that the solution of

- q" w 0 , w (0) = 1 , w'(0) - 0

additionallv satisfies

-. '...-..... ..,..-....- . . ... -. -.. .... .-..'..', .'......... ....... ... .-.. ..- ... .-.... . - - .-......... .. ,..,-%'.'- " _ _ . .. .. _ ', .7._-.,' '_,." . : ,. '. % ." . ,," " ",_ -'-." ,- -% - . .. *'--. " * *' ' *. " ' ' -* % -. ' ' -----
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w(1) , (1) 0

Therefore X(1 )  is also an eigenvalue of -d /dx" + q,2 w is the correspond-
(1)

ing eigenvector, and its Cauchy data agrees with that of €t at both end-

points. A similar result holds by symmetry for any eigenvalue and the

corresponding eigenvector for q2 From Lemma 7 we now conclude that ql =q2

3We obtain the identifiability of a C, layered conductivity by assembl-

ing these results.

Theorem 2: Let 2 be the strip {fx : -x<x1 0, 0<x2,<11 . if Y1 (x,) and

3
y(x) are two layered conductivities of class C ([0,1]) , and if A = Y

(or equivalently if Q - Q2) , then yI Y2

Proof: Let

i( ,2/ 2 1 ,
(29) qi - _Yi /Y + /Yi i = 1,2

Lemmas 5 and 6 and the discussion immediately after show that A A
ql, q2 ,

for all EIR , and ae have explained why this implies M M for
q1 , q2 , •

, all E C . Therefore ql - q2  as a consequence of Lemma 8. For fixed q

(29) is a second-order differential equation for yi Both y's have the

" same Cauchy data, using Lemma 5 again, so they must be equal.

• Remark 4: One could use other inverse spectral theorems in place of Lemma 7,

" with minor modifications of the argument. The one proved in [51 requires less

regularity for qi and it leads to a proof of Theorem 2 with yi E C ([0,1])

We believe that the regularity hypotheses on f. are an artifact of the method
1

.17-

".................................'°° "- " -' ° , ° 'B .'" ° , 
,
- " * " . '. . . . * . ..• 

°
" • . • . . . .- _ _
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of proof, and not intrinsic to the problem.

Remark 5: k, may on, Iud , t hat y based ,n an (apparent) wtaker

assumption than It suffices to know that

.Y (,0) - A (0,0) and

A (0,) -- A (0,, )
Y1 Y2

for two specific pairs of boundary data ( ,0) and (0,T) satisfying the

condition:

9
there exists an interval (a,b), a < b

such that representatives of p and ,

when restricted to (a,b), vanish at most

on a set of measure zero.

Indeed, with this assumption, it follows directly from the proof of Lemma 6

that . = A for each E E IR . An energy argument, similar in spirit

*l,~ Y 2 1C

to that in [6] (or that in the proof of Theorem 1) but applied to the equations

(yiv') ' - fjyv 0,
Yi 1 C20

with E sufficiently large, now shows that yl(x) = y2 (x) and y!(x) = Y2(X)

at x= 0,1 . From the discussion following Lemma 6 it follows that = A
q", q 2 '299

and the rest of the proof of the fact that yl =Y proceeds exactly as before.

2S

.'-S .
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7. Convergence of a reconstruction algorithm

The numerical reconstruction of a conductivity y involves its estima-

tion in some finite dimensional space, using partial information about the

boundary measurements. We shall formulate a simple algorithm of this type, and

prove its convergence as a consequence of the identifiability results in [6].

If the available data are the energies {Q ( N )} corresponding to

some known boundary values ,1, 2'... ,and if y is to be approximated in a

finite dimensional subspace VN  of L (Q) , then a natural approach would

seem to be

find yN E VNr{_ : O<_ 0 <-(x)} such that

max IQ )-Q 0( m/m 2  is "minimal"YN m i "

For this to succeed, it is of course necessary that y be approximated well

bv some element of V That ip easily arranged, but it is not enough: since

the problem is ill-posed, we must somehow make sure that there is a minimal value

i:-J that can not deviate wildly from " A natural way to achieve this is

h ,within a fixed compa, t set K (relative to a topology in which we

ex e, t ccnvergence). Thus modified, our method is to

(30) find y E VN n K such that
fi N -

max Q 0 M)-Q (Ym )/l1 .2 is minimal.
lm.< N m y m/in1m'l -i nml.

Finding a K which ensures convergenc-, is not overly conservative,

and has a simple description is in general nontrivial. The method (30) could

be called semidiscrete, since the evaluation of 0 (: ) still requires the
m

~ K j-iji ~e-:-:~fe-§*~i :K~x ..->:-:.N
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solution of an elliptic boundary value problem. The compactness of K ensures

that the sequence lyN NI has a subsequence converging to some y*E K If
N=1

the spaces V the set K , and the sequence {o 1w are chosen properly
N' m m=l

then y will have the same boundary measurements as y If Y is identifiable

within K by means of boundary measurements then * = " and the method converges.

We give a concrete example, including the details of the convergence

proof just sketched, for y which may be extended holomorphically to a

(complex) ball

B R(2O) = {zEC 2  Z- R

about some E 2 , with 2 C BR(O) . In other words, we suppose that y has

a power series

y(x) = a (x-Xo) x E P
cL

with

sup R ' ', 1 , , -BR( O

(In the last two expressions -t ranges over ill f-tt'h. ,, nonnecativ 1nt zrr.)-

The functions -, are assumed to be dense in H 2 (32 ( is a C
m m= 

a

,.ii,, and we choose

V= p p is a polynomial of diegree d

where {dN I %=1 is a sequence converging to as N - The compact set

K consists of those analytic functions on ufor which

I.D

-min (x) C max "x)
C x 47 xc. " -'

'.

. , . .% . . 2 , -° . .% *'. . -*- • % - . .• *o. *,o* .. o°* . o. ~ . .- •. . . .% .' ., ' - % % ' . ° . - '
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and

(31) sup . RI' I.i C u(R a I •

for some fixed C > 1

It is easy to see that y can be approximated well in VN n K Indeed,

when N is large enough

=N 
=  d a (x-) E VN n KN < N  a-!. N

and this N in L (Q) as N- We know that

(32) IQy (O -Q y( ) . Dl -yij co 11 2

L (Q) , (2

whenever ¢ and y are uniformly bounded away from 0 and Therefore

min max Q ( )-Q (1)/ 2 - 02.
;EV nK 1m: N 

-
m y m

as N , and so the yN satisfy

(03) max IQY ( m)-Qy( m)I/i • m - 0-
1 <m,<N ~N m Y

as N

3v the definition of K

(N) o
YN a.,

(N)"ith a 0 for jicl > dN  and

. ."- " " .

. . . . . . . . . . . . . . . ."....". .•
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supR lla(N) I C sup l la
CLI

cL,N tO

Therefore there is a subsequence N for which
k

(Nk) .. -

Saas k-- for each aCL cL

" and

(34) sup RIO' jb .L C sup RI' IlaLI
C a

It follows that

-* = b (x-xo) CL

k CL

uniformlv in every ball ix x-x R',, R' R and consequently

(35) yNk y in L (Q)

ik

From (33) and (35) we get that

• Q ,( m) = Q. ( m) m~l,2....
'y m m

and thus

.'. : (3b) Q , = 6)

The 1 7 i{ in usiing (3-) (3- i t fact tiit K:Nk

m 316) i:,vd tl., ijd n.t i ii tr " ,K- ano l','ti. ,0mdI-t iv t i s, pr,,\vd in V6 1

it fol ,' tiat K : , T -he prctcdin" "

.~~~. .. 5 . . .
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argument shows not only that {yN}O has a convergent subsequence ttfndir'

to y but also that any convergent subsequence of {y necessaril,:
N N=l

tends to y This implies that the entire sequence converges to j

Remark 6: The case when y is merely analytic on 2 can be treated

similarly. Let H be a compact set such that

c interior(H) , and

y extends analytically to a

neighborhood of H

The latter condition assures that

1 ~
sup - a a x

for some RH > 0, where the supremum is now over points x E H and integer

two-tuples a 0 If (31) is replaced by

ja CEj 1 Day(x) [[j

sup % IDci(\)I W C sup Rl - -

in the definition of K (the supremum again being over x E H and a 0)

then the argument can proceed essentially as before.

Remark 7: A similar semidiscrete method can be formulated for the layered

case. By Theorem 2, convergence can be assured by choosing K so that four

S. derivatives of y remain uniformly bounded on

Remark 8: For piecewise analytic y we know identifiability from Theorem 1, but it

is not so clear now to define K . If a cover relative to which K is piecewise

analytic is known, then one can proceed as before by controlling yN separately

on each piece. If the cover is unknown, however, it seems difficult to find a

choice of K which assures convergence.

. .. .. .. .. ..



39

References

[I] Calder6n, A. P., On an inverse boundary value problem. Seminar on
Numerical Analysis and its Anplications to Continuum Physics, Soc.
Brasileira de Matemntica, Rio de Janeirc, 1980, pp. 65-73.

[2] Cannon, J. R., and Douglas, J., and Jones, B. F., Determination of the ""
diffusivitv of an isotropic medium, Intl. J. En rn. Sci. 1, 1963, pp. 453-
455..

[3] Grisvard, P., Boundary Value Problems in Non-Smooth Domains. Lecture
Notes ;:19, Department of Mathematics, University of Maryland, 198J.

[4] HWrmander, L., Linear Partial Differential Operators. Grundlehren
der Math. Wiss., Vol. 116, Springer, 1963.

[5] Isaacson, E. and Trubowitz, G., The inverse Sturm-Liouville problem
1. Comm. Pure Apol. Math., 36, 1983, pp. 767-783.

[6) Kohn, R. and Vogelius, M., Determining conductivity by boundary measure-
ments. Comm. Pure Appl. Math., 37, 1984, pp. 289-298.

[7] Kohn, R. and Vogelius, M., Identification of an unknown conductivity by
means of measurements at the boundary. Inverse Problems, D. W. McLaughlin
ed., SIAM-AMS Proc. no. 14, 1984, pp. 113-123.

[8] Langer, R. E., An inverse problem in differential equations. Bull. AMS,
39, 1933, pp. 814-820.

[9] Lax, P. D., A Stability theorem for solutions of abstract differential

equations, and its application to the study of the local behavior of
solutions of elliptic equations. Comm. Pure Appl. Math., 9, 1956, pp. 747-
766.

[10] Lions, J. L. and Magenes, E., Non-homogeneous Boundary Value Problems
and Applications, I, Springer-Verlag, New York, 1972.

[i] Malgrange, B., Existence et approximation des solutions des 6quations
aux d6riv4es partielles et des 6quations de convolution, Ann. Inst.
Fourier Grenoble 6, 1955-6, pp. 271-355.

[12] Suzuki, T. and Muravama, R., Identification of coefficients of parabolic
equations. Proc. Japan Acad., 56, Ser. A, 1980, pp. 259-263.

....... V. .



- -.

* 0

* 0

* 0

* 0

p.

FILMED
* 0

2-85 *

* S

* S

DTIC
...... *. . ......... .

.. V



fA


